
NASA Contractor Report 194985

//:J yj

.q

Investigation of Allan Variance for _..
Determinin_ Noise Spectral Forms Wltb

Application_to Microwave Radiometry

William D. Stanley
Old Dominion University Research Foundation, Norfolk, Virginia

Contract NAS1-19858

November 1994

National Aeronautics and

Space Administration

Langley Research Center

Hampton, Virginia 23681-0001

p,.
r_

f-4
I

Z

O

Z
O

b-

b--

uJ

A

o_

"4"
O',

I

_J
I

v')

Z

0
Z
I..-4

Z

LU .-._

LU

O0
U,U.

l_,,t

Zo_

"_ l.J

ZW

..JO

U_

pw

U
C

>-

I-- i
UJ

.a,,

0 C

Q

0
._

w C
°._

<E
o

c_

o
b.-

c3 o

.J r0 c_
ck c
_k .- ,,D
,_ u_ ,0

0
r_
0
0

,,i"

!

Investigation of Allan Variance for Determining Noise Spectral Forms

With Application to Microwave Radiometry

by

William D. Stanley

Abstract

An investigation of the Allan Variance method as a possible means for

characterizing fluctuations in radiometric noise diodes has been performed. The goal is to

separate fluctuation components into white noise, flicker noise, and random-walk noise.

The primary means is by discrete-time processing, and the study focused primarily on the

digital processes involved. Noise satisfying the requirements was generated by direct

convolution, Fast Fourier transformation (FFT) processing in the time domain, and FFT

processing in the frequency domain. Some of the numerous results obtained are presented

along with the programs used in the study.

Introduction

The application of the Allan Variance method to determine the stability of precision

oscillator circuits has been well documented in the literature (refs. 1-7). R.W. Lawrence

of NASA Langley Research Center (ref. 8) has proposed to apply the same concept to the

determination of the long-term stability of noise diodes for precision radiometric

applications. This concept has been investigated in this report and some of the findings

have been documented here.

Sample Mean and Variance of Random Process

A

Assume a random process x(t) defined over some time interval, and let xk(_)

represent the time average of this function over the interval tk < t < t k + z as illustrated in

figure l(a). This operation can be performed by the integrate-and-dump process, which

can be described as

x_ ('t') = 1[,, ÷'x(t)dt (1)
O lk

A

The value xk('r) is the time-average or mean over an interval with duration _:.

Assume now that the function is sampled at equally-spaced intervals T seconds

apart as shown in figure l(b). For a given interval having N discrete samples, a discrete-

time approximation to the continuous-time formulation of (1) is the sample mean as defined

by

I k+N-1

= xj
k

This operation can also be referred to in signal-processing terminology as a sum-and-dump

algorithm.

The sample variance of this process is denoted as vk(N, "r) and is given by

• 1 k+N-I

(3a)

, ['k+N-t i :_+N-I / 2]
= / # 3b)

N-1L , -N'l_ x/

The proceeding formulation is based on the statistics of a so-called sample

population, from which information about the process can be determined from the sample

mean and sample variance. The term "Allan Variance" refers to a specific manner in which

the sample variance is determined as a function of the integration time _: to sort out

processes exhibiting different types of power spectra.

2

T1 :I11

Assume that the power spectrum S(f) is of the form

S(f) fK1k for 0 < f < oo (4)

where K_ is a constant. The theoretical work of Allan and others establishes the basis for

the variance v(N, z) to have the form

v(N, I:) = K2,r k-I (5)

where K 2 is another constant.

Some of the underlying theory, however, involves improper integrals and diverging

functions so it is not always clear how the proceeding process will behave with finite

summations and discrete-time processes.

From (4) and (5), several forms were of primary interest in this investigation. They

are as follows:

White Noise:

S(f) = K 1 (6)

Flicker Noise:

v(N, r) = K2 (7)

S(f) = K_ (8)
f

Random Walk Noi_¢:

v(N, z) = K 2 (9)

S(f) = _ (10)

v(N, "_)= K2_" (11)

By determining v(N, _) as a function of z, it may be possible to sort out the spectral terms

according to the behavior of the variance.

It can be shown that the expected value of vk(N, z) is given by

(12)

i

where x 2 is the mean-square value of the process and

autocorrelation function corresponding to a time shift of _:.

In general, the mean-square value can be expressed as

91_,('r)=E[xl, x,] is the

i

x_= _ + u_ (13)

where _ is the variance and/.t_

function can be expressed as

is the mean or dc value. Similarly, the autocorrelation

() = R_(z)+/_ (14)

where R,('r) is the autocovariance function. Substitution of (13) and (14) in (12) results

in

(15a)

= _ - R_(v) (15b)

Thus, the effect of any dc component in the random process cancels out and does not affect

the variance.

4

-F!I II !

For any realistic processes, Rx(r) approaches zero as _r increases. This means

that the preceding expectation tends to approach

E[v k(N, z')] = o"3 (16)

as _ increases.

After studying the pattern of the algorithm for different values of N, it was decided

to restrict most of the study to a two-point variance as suggested by Lawrence. While it is

possible to produce slightly lower fluctuations in the variance estimates by using more

points in the algorithm, there is a tradeoff with respect to resolution. Further, the

complexity of implementation of the algorithm increases markedly with increasing N.

Thus, N = 2 was judged to be a good choice, and in subsequent expressions, the variance

rotation will be simplified to v(N, _) = v(2, v) = v(_r), with N = 2 understood. (Later in

the report, N will be used as the number of points in a record length.)

White Noise Reduction by Integration

It is instructive to initially review the procedure by which the variance of a white

noise process can be reduced by integration or averaging. Consider white noise having a

flat power spectrum as shown in figure 2. It has been assumed here that the noise has been

sampled at intervals of T seconds apart and, hence, the sampled spectrum is defined over

the frequency range -1 / 2T < f < 1 / 2T. The power spectrum has a constant value

S(f) = N o / 2 over the region, and the sampling process creates aliases at integer multiples

The variance of the noise can be expressed as

2 No 2B=NoB= N°

of the sampling frequency.

(17)

Assumethat thefunction x(t) is successively integrated or averaged over an interval _r

with 'r increasing. The equivalent noise bandwidth of the process is then 0.5/r. Letting

v(lr) represent the variance of the filtered process, it can be readily shown that

(18)
T

w

The conclusion is that the variance of a white-noise process is inversely proportional to the

integration time for an integrate and dump or sum and dump filter. The process is

illustrated in figure 3.

Two-Point Allan Variance

Consider a random process x(t) for which N equally-spaced samples are taken

at intervals of T seconds over a total epoch length of tp seconds; i.e.,

tp = NT (19)

Assume that N is selected as an integer power of 2; i.e.,

N=21 (20)

where I is an integer. Consider the first two points x 1 and x 2 and let

r=x +x (21)
2

The sample variance vl., of this two-point distribution is

1 2 2

(22)

6

71 • I

Substitution of (21) in (22) and simplification lead to

vet = l(x_ -x2) 2 (23)

The preceding process is repeated at N / 2 - 1

sequence of two-point variance samples as follows:

1

v,.2= _ (x3- x4)2

1

v,._= _(x_ - x_):

1

Vl.j ='_(X2j_I --X2.j)2

1

v,N,2= _(xN_,- x,,)_

intervals of width 2T to yield a

(24)

(25)

(26)

(27)

Next, the mean value 7_ of the N/2 variances is formed as follows:

NI2

1 _7,.j (28)_' = N /----_,

The quantity _t is the average or mean variance associated with the short integration

interval z = T. This constitutes the completion of the first cycle.

The second cycle of the computational process is initiated by first doubling the

"integration" or averaging interval to 2T by successive linear averages. Let

x2j = xt+x_ (29)
2

7

x3 + x4 (30)
x2'2 - 2

.

x2j-I + x2J (31)
x2'J = 2

xN_ 1 + x# (32)
x2'm2 - 2

The variance estimates for the longer intervals are now computed by

V2,1 = 1 (X2,1 -- X2,2)2 (33)

_ l(x 2v2.2- _ 2,3- x2,,)

1(x
v2.1 = "_ 2.2i-1 - x2,2j)2

(34)

(35)

,V2,N/4 = I (X2,N/2_ 1 __ X2,N]2)2
(36)

The mean variance _2 is now computed as

1 N/4 --

Without showing the intermediate steps, there will be a total of L = log 2 N cycles.

On the last cycle, the interval is NT/2 and there are only two samples in which the variance

can be computed. Hence

- l(x
- ,.,-x_.2)2 (38)

Algorithm for Two-Point Variance

The analysis in this section will be limited to the two-point variance algorithm, for

which most of the data obtained are based. The basic process in cyclical form is illustrated

in figure 4. Basically, there are L = log 2 N cycles with three nearly identical steps except

for the first and last cycles.

The first cycle consists of the following three steps:

(1) transfer of N samples of x(t) to y(t) preserve original array intact

(2) computation of N/2 separate estimates of the variance vl, j by the two-point

algorithm and

(3) computation of the mean variance _ from the N/2 separate variances based

on an integration time T.

The first step in the second though the L - 1 cycles consists of replacing the N

points of y with N/2 points based on doubling the sampling time interval. Steps (2) and

(3) are identical to those of the first cycle except that the number of points used in the

separate variance and mean variance estimates become successively smaller in each cycle.

The first two steps in the Lth or last cycle follow the preceding pattern except that

there is only one variance estimate vL in this case. Thus, there is no mean variance

compilation in this case and vL = vL. The equivalent integration time is NT / 2.

As a further aid in visualizing the process, refer to the chart of figure 5 based on

N = 16 points. Obviously, this record length would be far too short to obtain any

statistical reliability, but the chart provides an interesting visual representation of the

process. In this case L = log 216 = 4. The various integration times in this process are

T, 2T, 4T, and 8T. There are four cycles and a total of 12 steps.

A computer flow chart for the Allan Variance algorithm is shown in figure 6. Some

of the notation varies slightly from that previously utilized due to the programming

constraints. In fact, the two-dimensional variables Yij and vi.j can be replaced by a one

dimensional variable by replacing the array with new data following each cycle.

9

Statistical Analysis of the Allan Variance

The extent to which the Allan variance algorithm is statistically significant will now

be investigated. Let vij represent the ith cycle of the algorithm based on the jth segment,

which will be denoted for this development simply as v(N, z). The expression for v(N, z)

is

N 1= _ (Yk - y)2
v(N,z) -1 1

(39)

Assume that y(t) is gaussian distributed white noise with mean /.t_

The Allan variance can then be expressed as

and variance tr2.

0 .2

v(N, z) = ._:_L z
N - 1 ZN-I

(40)

where 2ZN-_ is a chi-squared distribution with N - 1 degrees of freedom as defined by

2 2 2
XN-1 = x2 + x2 + + xN (41)

Each x, is gaussian distributed with mean 0 and variance 1.

The mean va, ue and variance of the chi-square distribution are denoted,

respectively, as/.tz_,_ _ and o_z_,_, and they can be shown to be

/.tzL _ = N - 1 (42)

o2L_ = 2(N - 1) (43)

10

!:I 711 I !

The expected value of v(N, _) is then given by

x(N-1)
E[v(N,'r)] = #, N - 1

The variance of v(N, _) is

2(o'_)2(N- 1)2o'_

E{[v(N, "C)-/.t,] 21 = (N - 1)2 = N--"_-1

The mean value _(_r) based on N_ variance computations is

_('r)= vk(N, "r)

It can be shown that

and

E[(V_/.t,)2] = o_ = 2t:r;
N l (N - 1)

(44)

(45)

(46)

(47)

(48)

The preceding results havebeen analyzed to determine the various statistical

parameters inherent in the Allan variance algorithm. A tabular formulation of these results

is presented in table 1 for a record length of N points satisfying the requirement that

N = N L, where N e is the number of points in each cycle chosen as an integer power of 2

and L is the number of cycles in the algorithm.

From the results of the table, it is clear that the mean value of the variance as well as

the mean value of the averaged variance both decrease inversely with the order of the cycle.

This represents the expected trend for white noise since the order of the cycle is

proportional to the integration time.

11

Thevarianceo-,2 of the variance computation decreases inversely with the number

of points in each cycle and with the square of the cycle number. The variance _ of the

averaged variance decreases inversely with the number of points in each cycle and with the

order of the cycle.

A statistical merit factor that was found to be very useful is the ratio o'_/#7, i.e.,

the ratio of the standard deviation of the averaged variance to the value of the averaged

variance. This parameter provides a measure of the relative uncertainty of the averaged

variance. This parameter varies inversely with the square root of the number of points in a

given cycle. In all cases, this parameter is smaller for small n, but it increases as the

number of points used in the estimate decreases. In fact for a two-point algorithm, the

merit factor reaches a level of _ for the last cycle. This extreme case means that the

relative uncertainty on the last cycle is about +140 % of the estimated variance!

A significant conclusion of the preceding analysis is that the record length must be

considerably longer than the desired integration time over which the estimate is to be made.

Depending on the desired accuracy, it could be required to be 100 or more times the desired

integration time. Another way of looking at this is to say that the relative accuracy of the

last portion of the record length is considerably uncertain.

A similar tabulation for two-point variance is shown in table 2. To illustrate some

actual numbers, table 3 was constructed for N = 64 and two-point variance. Finally,

table 4 illustrates the results that would apply for four-point variance and for N = 64.

Variance Analysis with Discrete Operations

The original work performed by Allan and others primarily utilized Fourier

theorems based on classical continuous functions. While this approach is more

mathematically rigorous, it is intuitively void because of the divergence of some of the

functions involved at t = 0

pairs are shown in figure 7.

and/or f = 0. Examples of some of the pertinent Fourier

Inasmuch as any modern measurements would likely be made

12

utilizing discrete sampling processes(possibly with an FFT), it seemsprudent to

investigatethephenomenainvolvedbasedona finitenumberof sampledpoints.

Considerthethreeformsof noisespectradepictedin figure8. Thefunctionsof (a),

(b), and(c) areassumed,respectively,aspowerspectraof white noise,flicker noise,and

random-walknoise. Eachspectrumis presumedto bederivedfrom aprocesssampledata

rate of fs = 1/T. However, the power spectra fold about the folding frequency

fo = fs / 2, and a unique spectrum exists only from dc to f,,. The effect of the Allan

variance will be analyzed for each case based on a discrete summation of the power under

each curve.

White Noise. For white noise, the power spectrum will be expressed as

0. 2
S(f) = -- for 0 < f < fo (49)

L

where 0-2 is the variance of the process. Let v(_:) represent the Allan Variance based on

an integration time "r_ The corresponding frequency resolution Af_ is

1
zxf,=-- (50)

r|

The variance of the unmodified function is determined by taking the area under the curve

between 0 and fo and it is simply

0-2

L
(51)

where N H = N / 2. In the initial case, N H Af_ = L and the result is 0-: as expected.

13

Next, assume

Af 2_I/_r 2 =l/2T I.

before, and the variance can now be written as

that the integration time is doubled, i.e., let _, =21:_, and let

The corresponding frequency increment is now half as large as

o_ o_
To +To + ...

(52)

It should be noted that fo

the variance has been reduced by one-half and is 0"2/2.

It is easy tO generalize this process at this point and write for any r

is based on the original sampling rate and is a constant. Thus,

K
v('r)= -- (53)

Thus, it is expected that the Allan variance is inversely proportional to the integration time

for white noise.

Flicker Noise. Now assume that the power spectrum is of the form

S(f) = K--L 0 < f < fo (54)
f

This form is depicted in figure (b). Because of the divergence of (45) at f = 0, the lowest

frequency indicated is Af in which S(Af) = K/Af.

14

Thevariancein thiscasecanbewrittenas

v(,) = s(_)_ + s(2_)af + L + S(Nay)A/

:K(_.[_I +_____1 1 1)'_,Af 2Af + 3Af + NttAf Af

!= K, 1+ "_ +-_ + -4-

= K,K2 (55)

where K 2 is a constant representing the summation. The expected result is a constant

value independent of the integration time!

Random Walk. Noise. Finally, assume that the spectrum is of the form

S(f) = _ 0 < f < fo (56)

This form is illustrated in figure (c). Again, because of the divergence at f = 0, the lowest

frequency component is Af in which S(f) = K/(Af) 2 .

The variance in this case can be written as

v(z) = S(Af)kf + S(2Af)Af + S(3Af)Af + + S(NAf)Af

[1 1 +_-T2] 1=K 3 1+--+-+
4 9 "-_

= K3K4 = K3K4z (57)
Af

15

This resultindicatesthatthevarianceof random-walknoiseshouldincreaselinearly with

the integration time 't'.

Resolution. It should be understood that as the integration time increases, the

number of points used in the variance estimate decreases, and the resulting uncertainty of

the estimate increases. A different way of looking at this is that the lowest frequency in the

spectrum is Af= 1/," and this is the region where the uncertainty is greatest.

Consequently, the integration time must be much larger than the reciprocal of the lowest

frequency at which an estimate is desired.

Computer Programs Developed

Numerous computer programs were written during the course of this study, but four

particular programs deserve special attention due to their extensive utilization within the

study. These four programs were written in QBASIC ("Quick Basic") and are identified by

the following four titles: (1) ALLAN.BAS, (2) ALLCON.BAS, (3) ALLFFT.BAS, and

(4) ALLFFI.BAS. The first one explicitly uses the name Allan in reference to Allan

Variance, and the others use the abbreviation "ALL" for Allan at the beginning of the title,

All of the programs utilize the Allan variance algorithm, but the last three provide much

more. Each will be discussed briefly, but detailed program listings will be delayed until the

last three sections.

(1) Al,,I,,A,]_tAS. This program provides a direct computation of the Allan Variance of a

signal having 21 points, where I is an integer. In theory l could be set to any arbitrary

integer, but a practical limit is imposed by the storage capacity of the computer used. The

output is a tabulation of the Allan variance as a function of the integration time r.

Although any input data could be utilized, most of the studies utilizing this program directly

employed white noise.

(2) ALLCON.BAS. This program performs a direct convolution in the time domain

between white noise and a specified impulse response whose Fourier transform has the

16

_FTF

proper spectral shape required to produce different types of noise. The key feature here is

that all of the analysis is done directly in the time domain. The last part of the program

tabulates the Allan variance as a function of the integration time.

(3) ALLFFT.BAS. This program starts with an input random process and an impulse

response as in the previous program but does not convolve in the time domain. Instead,

the FFT of the input signal and the FFT of the impulse response are first computed. Next

the FFT's are multiplied at each frequency using complex arithmetic, and the inverse FFT

is computed. This signal is then applied to the Allan variance process, and the Allan

variance as a function of the integration time is then computed.

(4) ALLFFT1,BAS. This program starts with an input random signal and computes the

FFT. Unlike the previous two programs, an impulse response is not provided. Instead, the

FFT of the input signal is adjusted in the frequency domain to the desired spectral shape.

The inverse FFT is then computed, and the Allan variance algorithm is applied. The output

is a tabulation of the Allan variance as a function of the integration time.

White Noise Simulation

White noise can be directly simulated with either of the four programs, although it

is on "overkill" with the latter three. The basis for the random signal in each case was the

random number generator RND in QBASIC. This generator produces a random variable

that is uniformly distributed from 0 to 1 with a mean value of 0.5 and a standard deviation

of 0.5 / _ (or a variance of 1/12). After a reasonable number of averaging operations, a

gaussian distribution may be assumed. In all simulations, the variable was shifted to

produce a mean of zero and multiplied by 100. The result is a distribution having a mean

value of zero and a variance of 2500/3 = 833.3.

The experimental system employed in the laboratory utilized a sample time

T = 0.2 s. Consequently, the output data format for integration time was adjusted to create

values of time that were multiples of the sampling time.

17

A listingof theprogramALLAN andthecorrespondingsimulationresultsfor white

noisewith N= 213 = 8192 points are shown in figure 9. An associated plot is shown in

figure 10. For the initial integration time of 0.2s, the computed Allan variance is about

819.8, which differs from the theoretical value of 833.3 by about 1.62%. From the plot,

the variance as a function of integration time follows closely the expected 1/r dependence

up to about _:= 100 s, at which time the variation begins to deviate significantly.

Although "clumsy" because of the additional features, it was decided as a test to

compare all four programs with white noise as the desired input variable. In this test, the

number of points was limited to 21° = 1024 points due to memory restrictions. The

program ALLAN was run again, and a program listing along with the output data are

shown in figure 11. The corresponding plot is shown in figure 12. Once again, the

derivation from the expected behavior becomes apparent as r approaches the limit of the

time range.

Next, the program ALLCON was adjusted for white noise. This was achieved by

setting the impulse response simply to H(0) = 1 and H(N) = 0 for N _: 0. The program

listing and output data are shown in figure 13. These results are in perfect agreement with

those of the preceding program and, therefore, were not plotted.

The third run of the same input signal was made with ALLFFT using the same

noise generator as in the preceding run. Once again, the impulse response was established

as a single point with non-zero value, i.e. H(0)= 1. The program listing is shown in

figure 14 and the output data are shown in figure 15. Once again, the results are the same.

The fourth run of the same data was made with ALLFF1. In this case, only the

input random signal was specified in the time domain. The approach in this case was to

specify the spectral shaping. This is achieved with the use of the functions HM(M) and

HP(M). The quantity HM(M) represents the frequency domain filter magnitude

response and HP(M) represents the phase response. These functions were established

for this run as follows:

18

_'! Ill

HM(M) = 1 for 0 < M < 2043

HP(O) = 0 for 0 _<M < 2043 (58)

The program listing is shown in figure 16, and the data are shown in figure 17.

The results are again in agreement.

Flicker Noise Simulation

The generation of flicker noise and the measurement of the Allan Variance was

achieved separately with the three programs ALLCON, ALLFFT, and ALLFFT1. Flicker

noise possesses a power spectrum proportional to 1If. The process used to create the

desired noise is based on the following Fourier transform pair:

_[1] 1
[_j=_ (59)

Since convolution in the time domain is equivalent to multiplication in the frequency

domain, one has the choice of either convolving the white noise at the input with an

impulse response proportional to 1 / _ (or 1 / afN) or by multiplying the white noise

spectrum by a transfer function proportional to 1/,ff (or 1/a/--M-).

When the linear spectrum is modified by a function proportinal to 1/-_/-f, the

power spectrum becomes proportional to l/f, which is the desired outcome.

19

First, ALLCON wasusedfor an 8192-pointsignal. The impulse responsewas

definedas

H(0) = 0

H(N) = l/_rN for 1 < N < 8192 (60)

Note that it is necessary to define H(0) separately due to the divergence of the spectral

form at N = 0. What this means is that the impulse response is invalid at the first point,

but this limitation did not seem to create any problems with the results.

The program listing and a table of the Allan variance versus integration time are

shown in figure 18. A corresponding plot is shown in figure 19. The ideal expected

values of the Allan variance should be essentially a constant, and this trend is definitely

observable up to about r = 25 s. For the last decade or so, however, the process is erratic

as expected.

Next, a run was taken with ALLCON based on a 1024-point array corresponding to

r = 102.4 s. The program listing and data shown in figure 20. The corresponding plot is

shown in figure 21. The nearly constant behavior of the variance at small values of r is

evident, but the results become unstable near the end of the time interval.

The preceding signal was then applied to the program ALLFFT. To avoid overlap,

the signal was first padded with zeros. Specifically the following input was created:

X(N) = random noise for 0 < N < 1023

= 0 for 1024 < N < 2047 (61)

H(O) = 0 (62)

20

H(N)=I/-4_ for 1<N<1023

= 0 for 1024 < N < 2047 (63)

A program listing is shown in figure 22, and the output data are shown in figure

23. These results are in exact agreement with the direct convolution approach in the time

domain. Note, however, that due to the padding, a 2048-point FFT was used to generate a

1024-point result for variance analysis.

Finally, ALLFFT1 was used for a 1024-point signal. The input random signal was

padded with zeros from N = 1024 to 2047 as in the previous case. However, the spectral

shaping in this case was performed in the frequency domain by the use of the following

transfer function:

HM(O) = 0 (64)

HM(M) = 1 / _ for 1 < M < 1023 (65)

HM(1024) = 0 (66)

and

HM(M) = HM(2048 - M) for 1025 < M < 2047 (67)

HP(M) = 0 for 0 < M < 2047 (68)

Note that the strategy in the frequency domain is to create a function whose

magnitude response is an even function about the folding frequency, which corresponds to

M = 1024. This is necessary for the corresponding impulse response to be a real function.

If the phase response had been specified as anything other than zero, it would be necessary

to force it to be an odd function about M = 1024.

The program listing is shown in figure 24, and the output data are shown in

figure 25. In this case, the level of the output signal is quite different than with the use of

ALLCON and ALLFFT. The reason is that there was no attempt made to adjust the

21

spectrallevel to correspondwith thatobtainedin thepreceding two runs. However, the

relative level is the quantity of interest, and a plot is shown in figure 26. The relative level

is observed to be nearly a constant over a wide range of 'r as expected.

Random Walk Noise Simulation

Continuing in the tradition established earlier, random walk noise was generated in

the time domain by convolving white noise with a constant value for the response. A

program utilizing ALLCON for a duration of 409.6 s and the output data are shown in

figure 27. The plot of these data is shown in figure 28. The upward trend of the variance

as _r increases is evident.

The array was reduced to 1024 points, constituting a time of 102.4 s, and the

program and data are shown in figure 29. The corresponding plot is shown in figure 30.

Next, the program ALLFFT was applied to the same random signal. In this case, a

2048-point FFT was used with zero padding as discussed earlier. The output data are

shown in figure 31. For all practical purposes, these results are in perfect agreement with

those of the preceding case.

Finally, ALLFFT1 was used for the same signal by performing spectral alteration in

the frequency domain. Random walk noise possesses a power spectrum proportional to

1If 2 . The linear spectrum can then be adjusted by multiplying by 1/f or, equivalently in

form 1/M. Specifically, the following transfer function was used:

HM(O) = 0 (69)

HM(M) = 1]M for 1 < M < 1023 (70)

HM(1024) = 0 (71)

HM(M) = HM(2048 - M) for 1025 < M < 2047

22

(72)

il II I

HP(M) = 0 for 0 < M < 2047 (73)

A program listing is shown in figure 32, and the output data are shown in figure

33. A plot of the results is shown in figure 34. As in the case of flicker noise, the level is

quite different here but the relative shape displays the correct pattern for most of the time

range.

23

Summary and Conclusions

The Allan variance process has been investigated as a means for characterizing the

power spectra of random noise processes. Extensive simulations were performed using

white noise, flicker noise, and random walk noise. Discrete time operations utilizing both

convolution and FFT processes were utilized, and several computer programs were written

to facilitate the study.

In general, the Allan variance estimates followed the theoretical processes expected

over much of the integration time range. However, two conditions were clearly evident

from the results: (1) the record length must be considerably longer than the interval over

which the integration time results must be evaluated. Said differently, the last 90 percent or

so of the record length exhibits wide fluctuations and (2) the record length must be

considerable larger than the reciprocal of the lowest frequency at which the spectrum is to

be evaluated.

24

_!I • Ii

References

1. D.W. Allan, "Statistics of atomic frequency standards." Proc. IEEE, vol. 54, no. 2,

pp. 221-230, Feb. 1986.

2. W.F. Egan, "An efficient algorithm to compute Allan Variance from spectral

density." IEEE Trans. on Instrumentation and Measurement, vol. 37, no. 2, pp.

240-244, June 1988.

3. K.W. Wan et al., "Extended variances and autoregressive/moving average algorithm

for the measurement and synthesis of oscillator phase noise." 43rd Annual

Synposium on Frequency Control. 1989.

4. B.L. Convoy and D. Le, "Measurement of Allan Variance and phase noise at

fractions of a millihertz." Rev. Sci. Instrum., vol. 61, no. 6, June 1990.

5. D.B. Percival, Characterization of frequency stability: frequency-domain estimation

of stability measures." Proc. IEEE, vol. 79, no. 6, June 1991.

6. J. Rutman and F. L. Walls, "Characterization of frequency stability in precision

frequency sources." Proc. IEEE, vol. 79, no. 7, July 1991.

7. S. Goldman, "Technique measures accuracy of Allan Variance of systems."

Microwaves & RF. March 1993.

8. R.W. Lawrence, M. J. Schemer, and B. M. Grady, "Measurement of Calibration

Stability of Radiometer Systems." 1993 SPIE International Symposium on Optical

Engineering and Photonics in Aerospace and Remote Sensing. April 12-16, 1993.

25

Table1. Statisticalpropertiesasafunctionof general parameters

n=l

General

Final

n=N a

0 -2

0-2

n

0 -2

20- 4

Np-1

20-4

n2fN,, -I)

20 -4

N_(Np -1)

0-2

n

0-2

N_

2_

N_(N_-D

2_

nN_(N,-1)

20- 4

N:,(N, -1)

r 2

_Na(Np-1)

r 2n

_ Na(Np -1)

1-1
n = variable assuming integer values Np for 1 _<I < L.

N = total number of points chosen as an integer power of Np.

Np = number of points in each cycle chosen as an integer power of 2.

N a = N/Np = largest number of points used in computing Y.

26

?'171I V

Table 2. Statistical properties for general two-point algorithms

n=l

General

Final

n=N d

=N/2

20"2

0 -2

n

0 -2

20- 4

20- 4

n 2

0 -2

n

0-2

20- 4

Nd

2 0-4

nNd

n = variable assuming integer values 2 I-1 for 1 < l < M.

N = total number of points chosen as an integer power of 2.

Np = 2 = number of points in each variance computation.

N d = largest number of points used in computing mean variance.

=N/2

27

Table 3. Statistical properties for N = 64 and Np = 2

2

4

8

16

32

o_

2

0 .2

4

0.2

8

o_
16

o_
32

2_

20_

4

2oa

256

o_

o_

2

o_

4

8

0.2

16

2o_
2o32

20.4

4o32

20.4

8,32

20.4

16o32

_2 = 0.25

= 0.70'7

2*1632

20_
]024

0 -2

32

20. 4

32 * 32

-1

n = variable assuming integer values 2 _-1 for 1 < I < 6.

N=64, N,=2 N_=64/2=32.

28

Table4. Statisticalpropertiesfor N = 64 and Np = 4

4

16

0 .2

0.2

4

0.2

16

20. 4

3 * 256

o_

0.2

4

0.2

16

20. 4

3-16

20. 4

3*4*16

20. 4

3 * 256

t 2 =0.2043,16

F2,4
- 0.408

_3o16

5-
- =0.816

n = variable assuming values 4 _-1 for 1 < l < 3.

N=64.

N_--4.

N d =64/4= 16.

29

(a)

x(t)

/

tk tk + t

(b)

xj

(a)

i. I; ._

Figure 1. Continuous-time and discrete time functions for which the
mean and variance are to be estimated.

3o

S(f)

No/2

1 1
B= 2_ fs= T

Figure 2. White noise spectral form after sampling.

31

Log[v('_)]

Log '_

Figure 3. Variation of white noise variances as a function of integration time.

32

Integration Time

Yl,j = xj

T Vl,j = {(Y2j-1 - Y2j) 2

Nd

for j= 1, N

for j = 1, Nd (or N/2)

2T

Y2,j = {(Y2j-1 + Y2j)

v2,j = {(Y2j-1 - Y2j) 2

Nd/2

V2-- 1 _,
Nd/2 1 V2,j

for j= 1, Nd

for j = 1, Nd/2 (or N/4)

4T

Y3,j = {(Y2j-1 + Y2j)

v3,j = {(Y2j-1 - Y2j) 2

Ncl/4

Q3- 1Nd/4 _ V3,j

for j= 1, Nd/2

for j = 1, Nd/4 (or N/8)

NT
2

YL,j = 1(Y2j-1 + Y2j)

VL.j = {(Yl - Y2) 2

VL : VL

for j= 1,2

for j = 1, 1 (or N/N)

Figure 4. Algorithm for two-point variance computations.

33

34

_d

li

Z

t-
O

t-
O

E

8
a)
o
c-

.{-

>

S

.__

!1:11 I"

x(n) n=l,N N---2 L

R=I,N

N1 = -_

v(n) = 1[y(2n-1) - y(2n)] 2 I

[_(l) = V(1) I

,_ n =2, N1

I vCJ[)= v(_ + Iv(n)- _C_)]n

_l n= 1, N1

y(n) = l[y(2n-1) + y(2n)]]

Output

Figure 6. Flow chart for two-point variance computation.

35

R(_) S(f)

1

-1

u(_)
1

()

,41L

I

sgn(f)

1
T 1

-1

U(f)

Figure 7. Some autocorrelation Fourier transform pairs.

36

_T]l-1 :

S(f)

(a)

I

Af2

I

&fl

(b)

Af2 Afl

S(f) K1
f

(c)

S(f) = K.._3
f2

Af2 Afl

Figure 8. Three noise forms considered in study.

3?

CLS

DIM X(8192), Y(8192), V(8192)

PRINT "PROGRAM ALLAN TO DETERMINE SAMPLE VARIANCE": PRINT
PRINT "L", "INT TIME", "VARIANCE": PRINT
NP = 8192: LP = 13

FOR N = 0 TO NP - 1

X(N) = 100 * (RND- .5): Y(N) = X(N)
NEXT N

FOR N = NP TO 1 STEP -1

Y(N) = Y(N - 1)
NEXT N
N1 -- NP
FOR L = 1 TO LP
N1 - N1 / 2
FOR N = 1 TO N1

V(N) -- .5 * (Y(2 * N - I) - Y(2 * N)) " 2
NEXT N

VBAR = V(1)
FOR N = 2 TO N1

VBAR = VBAR + (V(N) - VBAR) / N
NEXT N

FOR N = 1 TO N1

Y(N) = .5 * (Y(2 * N - I) + Y(2 * N))
NEXT N

PRINT L, .2 * (2 " {L - I)), VBAR
NEXT L

BEEP

PROGRAM ALLAN TO DETERMINE SAMPLE VARIANCE

L INT TIME VARIANCE

1 .2 819.8405

2 .4 422.2106

3 .8 214.7032

4 1.6 103.3248

5 3.2 52.65189

6 6.4 27.02878
7 12.8 14.13534

8 25.6 6.824592

9 51.2 2.61482

10 102.4 1.387154

11 204.8 .3692694

12 409.6 .442937

13 819.2 .603497

Figure 9. Program and data for white noise with 'c= 819.2 s and ALLAN.

38

!! ll"

I I I I
illll! I I I illlll I I I illlll l I i llilll I I l

0 0 0 _-
0 0 _,-
0 _-

o
o

oo

_-'0

6

u_

0

_o
0.

c5

U_

39

CLS
DIM X(8192), Y(8192), V(8192)

PRINT "PROGRAM ALLAN TO DETERMINE SAMPLE VARIANCE": PRINT
PRINT "L", "INT TIME", "VARIANCE" : PRINT
NP - 1024: LP - 10

FOR N = 0 TO NP - 1

X(N) = I00 * (RND - .5): Y(N) = X(N)
NEXT N

FOR N = NP TO 1 STEP -1

Y(N) = Y(N - i)
NEXT N

N1 = NP

FOR L = 1 TO LP

N1 = N1 / 2
FOR N = 1 TO N1

V(N) = .5 * (Y(2 * N - 1) - Y(2 * N)) " 2
NEXT N

VBAR = V(1)
FOR N = 2 TO N1

VBAR = VBAR + (V(N) - VBAR) / N
NEXT N

FOR N = 1 TO N1

Y(N) = .5 * (Y(2 * N - i) + Y(2 * N))
NEXT N

PRINT L, .2 * (2 " (L - i)), VBAR
NEXT L

BEEP

PROGRAM ALLAN TO DETERMINE SAMPLE VARIANCE

L INT TIME VARIANCE

1 .2 761.5204

2 .4 406.3706

3 .8 212.9356

4 1.6 98.75756

5 3.2 44.2822

6 6.4 13.76261
7 12.8 18.59924

8 25.6 8.317465

9 51.2 3.744104
I0 102.4 .2659905

Figure 11. Program and data for white noise with 'c= 102.4 s and ALLAN.

4O

]1 :il I

u

I I I I
IIIIII I i i IIlill I I I lilill I I I IIIIII I I I

A

v

g

g

,-0
d

::3

I.L

0

l/)

::3

I,..

0

0

t l

o_

LI-

41

CLS
DIM X(8192), H(8192), Y(8192), V(8192)
PRINT "PROGRAM ALLCON USING DIRECT CONVOLUTION": PRINT

PRINT "L", "INT TIME", "VARIANCE" : PRINT

NP = 1024: LP ffi10

FOR N - 0 TO NP - 1

X(N) = 100 * (RND - .5)
H(N) = 0: Y(N) - 0
NEXT N

H(O) = 1
FOR N ffi0 TO NP - 1

FOR I = 0 TO N

Y(N) = Y(N) + X(1) * H(N - I)

NEXT I
NEXT N

FOR N = NP TO 1 STEP -I

Y(N) = Y(N - 1)
NEXT N: N1 = NP
FOR L = 1 TO LP: N1 = N1 / 2
FOR N ffi 1 TO N1
V(N) = .5 * (Y(2 * N - 1) - Y(2 * N)) " 2
NEXT N
VBAR = V(1)
FOR N ffi2 TO N1

VBAR = VBAR + (V(N) - VBAR) / N

NEXT N

FOR N = 1 TO N1

Y(N) ffi.5 * (Y(2 * N - I) + Y(2 * N))
NEXT N

PRINT L, .2 * (2 " (L - i)), VBAR

NEXT L: BEEP

PROGRAM ALLCON USING DIRECT CONVOLUTION

L INT TIME VARIANCE

1 .2 761.5204

2 .4 406.3706

3 .8 212.9356
4 1.6 98.75755

5 3.2 44.2822
6 6.4 13.75261

7 12.8 18.59924

8 25.6 8.317465

9 51.2 3.744104

10 102.4 .2659905

Figure 13. Program and data for white noise with 'c = 102.4 s and ALLCON.

42

CLS

DIM X(2048), XIR(2048), Xli(2048), X2R(2048), X2I(2048)

DIM H(2048), HIR(2048), HII(2048), H2R(2048), H2I(2048)

DIM ¥(2048), YIR(2048), YII(2048), Y2R(2048), Y2I(2048), V(2048)
PRINT "PROGRAM ALLFFT USING FFT TO PERFORM CONVOLUTION": PRINT

PRINT "N", "INT TIME", "VARIANCE": PRINT : T = .2
NP - 2048: LP = 11: NH = NP / 2: PI z 3.14159: U = 2 * PI / NP

H(0) = 1: FOR N = 1 TO NH - 1: H(N) = 0: NEXT N
FOR N = 0 TO NH - I: X(N) = I00 * (RND - .5): NEXT N

FOR N = NH TO NP - 1: X(N) = 0: H(N) z 0: NEXT N

FOR M = 0 TO NP - 1: XlR(M) = X(M): XlI(M) = 0: NEXT M: IA = NP / 2: IB = 1
FOR L = 1 TO LP: IC = 0: ID = IA

FOR K = 1 TO IB: ZR = COS(IC * U): ZI = -SIN(IC * U)
FOR M = IC TO ID - 1

AR = XIR(M + IC): AI - XlI(M + IC)

BR = ZR * XIR(M + ID) - Zl * XII(M + ID)

BI = ZI * XlR(M + ID) + ZR * XlI(M + ID)

X2R(M) = AR + BR: X2I(M) = AI + BI

X2R(M + NH) - AR - BR: X2I(M + NH) = AI - BI: NEXT M
IC = ID: ID - ID + IA: NEXT K: IA = IA / 2: IB = 2 * IB

FOR M = 0 TO NP - 1: XlR(M) = X2R(M): XlI(M) = X21(M): NEXT M: NEXT L

FOR M = 0 TO NP - 1: HIR(M) = H(M): HII(M) = 0: NEXT M: IA = NP / 2: IB = 1

FOR L z 1 TO LP: IC = 0: ID = IA

FOR K = 1 TO IB: ZR = COS(IC * U): ZI = -SIN(IC * U)

FOR M = IC TO ID - 1: AR = HIR(M + IC): AI = HII(M + IC)

BR = ZR * HIR(M + ID) - ZI * HII(M + ID)

BI = ZI * HIR(M + ID) + ZR * HII(M + ID)

H2R(M) = AR + BR: N2I(M) = AI + BI

H2R(M + NH) = AR - BR: H2I(M + NH) = AI - BI: NEXT M
IC = ID: ID = ID + IA: NEXT K: IA = IA / 2: IB = 2 * IB

FOR M = 0 TO NP - 1: HIR(M) = H2R(M): HII(M) = H21(M): NEXT M: NEXT L

FOR M = 0 TO NP - 1

YIR(M) = XIR(M) * HIR(M) - XlI(M) * Nil(M)

YII(M) = XIR(M) * HII(M) + XII(M) * HIR(M): NEXT M: IA = NP / 2: IB = 1
FOR L = 1 TO LP: IC = 0: ID = IA

FOR K = 1 TO IB: ZR = COS(IC * U): ZI = SIN(IC * U)

FOR N = IC TO ID - 1: AR = YIR(N + IC): AI = YII(N + IC)

BR = ZR * YIR(N + ID) - ZI * YII(N + ID)

BI = ZI * YIR(N + ID) + ZR * YII(N + ID)

Y2R(N) z AR + BR: Y2I(N) = AI + BI

Y2R(N + NH) = AR - BR: Y2I(N + NH) = AI - BI: NEXT N
IC = ID: ID = ID + IA: NEXT K: IA = IA / 2: IB = 2 * IB

FOR N = 0 TO NP - 1: YIR(N) = Y2R(N): YII(N) = Y21(N): NEXT N: NEXT L

FOR N = NP TO 1 STEP -1: Y(N) = YIR(N - 1) / NP: NEXT N: N1 = NH

FOR L = 1 TO LP - 1:N1 = N1 / 2

FOR N = 1 TO NI: V(N) = .5 * (Y(2 * N - 1) - Y(2 * N)) A 2: NEXT N:

VBAR = V(1)
FOR N = 2 TO NI: VBAR = VBAR + (V(N) - VBAR) / N: NEXT N

FOR N = 1 TO NI: Y(N) = .5 * (Y(2 * N - 1) + Y(2 * N)): NEXT N

PRINT L, T * (2 " (L - 1)), VBAR: NEXT L: BEEP

Figure 14. Program and data for white noise with _ = 102.4 s and ALLFFT.

43

PROGRAM ALLFFT USING FFT TO PERFORM CONVOLUTION

N INT TIME VARIANCE

1 .2 761.5205
2 .4 406.3707
3 .8 212.9357
4 1.6 98.75756
5 3.2 44.28219
6 6.4 13.76262

7 12.8 18.59924
8 25.6 8.317466

9 51.2 3.744104

10 102.4 .2659903

Figure 15. Data for white noise with _ = 102.4 s and ALLFFT.

44

CLS

DIM X(2048), XlR(2048), X11(2048), X2R(2048), X2I(2048), HM(2048), HP(2048)

DIM Y(2048), YIR(2048), Yli(2048), Y2R(2048), Y21(2048), V(2048)

PRINT "PROGRAM ALLFFT1 USING FFT WITH SPECTRUM SHAPING": PRINT

PRINT "N", "INT TIME", "VARIANCE": PRINT : T = .2
NP = 2048: LP = 11: NH = NP / 2: PI = 3.14159: U = 2 * PI / NP

FOR N = 0 TO NH - 1: X(N) = 100 * (RND - .5): NEXT N

FOR N = NH TO NP - 1: X(N) = 0: NEXT N

FOR M = 1 TO NH - 1: HM(M) = 1: HP(M) = 0: NEXT M

HM(0) = I: HP(0) = 0: HM(NH) = I: HP(NH) = 0
FOR M = NH + 1 TO NP - 1: HM(M) = HM(NP - M): HP(M) = 0: NEXT M

FOR M = 0 TO NP - 1: XIR(M) = X(M): XII(M) = 0: NEXT M: IA = NP / 2: IB = 1

FOR L = 1 TO LP: IC = 0: ID = IA

FOR K = 1 TO IB: ZR = COS(IC * U): ZI = -SIN(IC * U)

FOR M = IC TO ID - 1

AR = XlR(M + IC): AI = XlI(M + IC)
BR = ZR * XlR(M + ID) - ZI * XlI(M + ID)

BI = ZI * XlR(M + ID) + ZR * XlI(M + ID)

X2R(M) = AR + BR: X2I(M) = AI + BI

X2R(M + NH) = AR - BR: X2I(M + NH) = AI - BI: NEXT M
IC = ID: ID = ID + IA: NEXT K: IA = IA / 2: IB = 2 * IB

FOR M = 0 TO NP - 1: XlR(M) = X2R(M): XlI(M) = X2I(M): NEXT M: NEXT L

FOR M = 0 TO NP - i: HR = HM(M) * COS(HP(M)): HI = HM(M) * SIN(HP(M))

YIR(M) = XIR(M) * HR - XII(M) * HI

YII(M) = XlR(M) * HI + XlI(M) * HR: NEXT M: IA = NP / 2: IB = 1

FOR L = 1 TO LP: IC = 0: ID = IA
FOR K = 1 TO IB: ZR = COS(IC * U): ZI = SIN{IC * U)

FOR N = IC TO ID - 1: AR = YIR(N + IC): AI = YII(N + IC)

BR = ZR * YIR(N + ID) - ZI * YII(N + ID)

BI = ZI * YIR(N + ID) + ZR * YII(N + ID)

Y2R(N) = AR + BR: Y2I(N) = AI ÷ BI

Y2R(N + NH) = AR - BR: Y2I(N + NH) = AI - BI: NEXT N
IC = ID: ID = ID + IA: NEXT K: IA = IA / 2: IB = 2 * IB

FOR N = 0 TO NP - 1: YIR(N) = Y2R(N): YII(N) = Y2I(N): NEXT N: NEXT L

FOR N = NP TO 1 STEP -1: Y(N) = YIR(N - 1) / NP: NEXT N: N1 = NH

FOR L = 1 TO LP - 1: N1 = N1 / 2

FOR N = 1 TO NI: V(N) = .5 * (Y(2 * N - 1) - Y(2 * N)) " 2: NEXT N:

VBAR = V(1)
FOR N = 2 TO NI: VBAR = VBAR + (V(N) - VBAR) / N: NEXT N

FOR N = 1 TO NI: Y(N) = .5 * (Y(2 * N - 1) + Y(2 * N)): NEXT N

PRINT L, T * (2 " (L - 1)), VBAR: NEXT L: BEEP

Figure 16. Program for white noise with '_ ---102.4 s and ALLFFT1.

45

PROGRAM ALLFFT1 USING FFT WITH SPECTRUM SHAPING

N

1
2
3
4
5
6
7
8
9
10

INT TIME VARIANCE

.2 761.5205

.4 ,: 406.3707

.8 212.9357
1.6 98.75756
3.2 44.28219
6.4 13.76262
12.8 18.59924
25.6 8.317466

51.2 3.744104
102.4 .2659903

Figure 17. Data for white noise with _ = 102.4 s and ALLFFT1.

46

• '] TI',

CLS
DIM X(8192), H(8192), Y(8192), V(8192)
PRINT "PROGRAM ALLCON USING DIRECT CONVOLUTION": PRINT

PRINT "L", "INT TIME", "VARIANCE": PRINT

NP = 4096: LP = 12

FOR N = 0 TO NP - 1

X(N) = i00 * (RND - .5): Y(N) = 0: NEXT N
FOR N = 1 TO NP - I: H(N) = 1 / SQR(N): NEXT N: H(0) = 0

FOR N = 0 TO NP - 1

FOR I = 0 TO N

Y(N) = Y(N) + X(I) * H(N - I)

NEXT I
NEXT N

FOR N = NP TO 1 STEP -1

Y(N) = Y(N - i)
NEXT N: N1 - NP
FOR L = 1 TO LP: N1 = N1 / 2

FOR N = 1 TO N1

V(N) = .5 * (Y(2 * N - I) - Y(2 * N)) " 2: NEXT N

VBAR = V(1)

FOR N = 2 TO N1
VBAR = VBAR + (V(N) - VBAR) / N: NEXT N

FOR N = 1 TO N1

Y(N} = .5 * (Y(2 * N - I) + Y(2 * N)): NEXT N
PRINT L, .2 * (2 " (L - I)), VBAR

NEXT L: BEEP

PROGRAM ALLCON USING DIRECT CONVOLUTION

L INT TIME VARIANCE

1 .2 465.0879

2 .4 483.4081

3 .8 511.6693
4 1.6 599.207

5 3.2 747.6578
6 6.4 800.0687

7 12.8 1009.559

8 25.6 1217.807

9 51.2 179.5898
10 102.4 87.83582

11 204.8 956.2097

12 409.6 3456.044

Figure 18. Program and data for flicker noise with _ = 409.2 s and ALLCON.

47

m

I
Illlll I I I

O

I I I
tllll I I I I IlllJl I I I IJJJli i I I

O T--

8

g

,,-0

0

0

e_

48

]1 • J

CLS

DIM X(8192), H(8192), Y(8192), V(8192)
PRINT "PROGRAM ALLCON USING DIRECT CONVOLUTION": PRINT

PRINT "L", "INT TIME", "VARIANCE": PRINT
NP = 1024: LP = I0

FOR N = 0 TO NP - 1

X(N) = I00 * (RND - .5): Y(N) = 0: NEXT N

FOR N = 1 TO NP - I: H(N) = 1 / SQR(N): NEXT N: H(0) = 0
FOR N = 0 TO NP - 1

FOR I = 0 TO N

Y(N) = Y(N) + X(I) * H(N - I)
NEXT I
NEXT N

FOR N = NP TO 1 STEP -I

Y(N) = Y(N - I)
NEXT N: N1 = NP

FOR L = 1 TO LP: N1 = N1 / 2
FOR N = 1 TO N1

V(N) = .5 * (Y(2 * N - I) - Y(2 * N)) A 2
NEXT N

VBAR = V(1)
FOR N = 2 TO N1

VBAR = VBAR + (V(N) - VBAR) / N
NEXT N

FOR N = i TO N1

Y(N) = .5 * (Y(2 * N - i) + Y(2 * N))
NEXT N

PRINT L, .2 * (2 _ (L - i)), VBAR
NEXT L: BEEP

PROGRAM ALLCON USING DIRECT CONVOLUTION

L INT TIME VARIANCE

1 .2 437.8973

2 .4 440.3997
3 .8 532.6196

4 1.6 517.8219

5 3.2 800.6263

6 6.4 846.5082
7 12.8 1505.267

8 25.6 1135.48

9 51.2 5.159271

I0 102.4 60.71339

Figure 20. Program and data for flicker noise with 1:= 102.4 s and ALLCON.

49

[_LHJ I I I IIIIII I.I I

co
0

IIIII I I I I

8
'N'--"

t.1,
v

>

llllil I I I

0

m

m

m

i

m

w

J

m

m

w

O
0
0

0
0

T--O

d

0
ffl

0.

50

+:1 _!]

CLS

DIM X(2048), XlR(2048), Xli(2048), X2R(2048), X2I(2048)

DIM H(2048), HIR(2048), HII(2048), H2R(2048), H2I(2048)

DIM Y(2048), YIR(2048), YII(2048), Y2R(2048), Y2I(2048), V(2048)
PRINT "PROGRAM ALLFFT USING FFT TO PERFORM CONVOLUTION": PRINT

PRINT "N", "INT TIME", "VARIANCE": PRINT : T = .2

NP = 2048: LP = 11: NH = NP / 2: PI = 3.14159: U = 2 * PI / NP

H(0) = 0: FOR N = 1 TO NH - i: H(N) = 1 / SQR(N): NEXT N

FOR N = 0 TO NH - 1: X(N) = 100 * (RND - .5): NEXT N

FOR N = NH TO NP - I: X(N) = 0: H(N) = 0: NEXT N

FOR M = 0 TO NP - 1: XlR(M) = X(M): XII(M) = 0: NEXT M: IA = NP / 2: IB = 1

FOR L = 1 TO LP: IC = O: ID = IA

FOR K = 1 TO IB: ZR = COS(IC * U): ZI = -SIN(IC * U)

FOR M = IC TO ID - 1

AR = XlR(M + IC): AI = XlI(M + IC)

BR = ZR * XIR(M + ID) - ZI * XII(M + ID)
BI = ZI * XlR(M + ID) + ZR * XlI(M + ID)

X2R(M) = AR + BR: X2I(M) = AI + BI
X2R(M + NH) = An - BR: X2I(M + NH) = AI - BI: NEXT M

IC = ID: ID = ID + IA: NEXT K: IA = IA / 2: IB = 2 * IB

FOR M = 0 TO NP - 1: XlR(M) = X2R(M): XII(M) = X2I(M): NEXT M: NEXT L

FOR M = 0 TO NP - 1: HIR(M) = H(M): HII(M) = 0: NEXT M: IA = NP / 2: IB = 1

FOR L = 1 TO LP: IC = 0: ID = IA

FOR K = 1 TO IB: ZR = COS(IC * U): ZI = -SIN(IC * U)

FOR M = IC TO ID - 1: AR = HIR(M + IC): AI = HII(M + IC)

BR = ZR * HIR(M + ID) - ZI * HII(M + ID)

BI = ZI * HIR(M + ID) + ZR * H11(M + ID)

H2R(M) = An + BR: H21(M) = AI + BI

H2R(M + NH) = An - BR: H2I(M + NH) = AI - BI: NEXT M

IC = ID: ID = ID + IA: NEXT K: IA = IA / 2: IB = 2 * IB

FOR M = 0 TO NP - I: HIR(M) = H2R(M): HII(M) = H2I(M): NEXT M: NEXT L

FOR M = 0 TO NP - 1

YIR(M) = XlR(M) * HIR(M) - XII(M) * HII(M)

YII(M) = XIR(M) * HII(M) ÷ XlI(M) * HIR(M): NEXT M: IA = NP / 2: IB = 1

FOR L = 1 TO LP: IC = 0: ID = IA

FOR K = 1 TO IB: ZR = COS(IC * U): ZI = SIN(IC * U)

FOR N = IC TO ID - 1: AR = YIR(N + IC): AI = YII(N + IC)

BR = ZR * YIR(N + ID) - ZI * YII(N + ID)

BI = ZI * YIR(N + ID) + ZR * YII(N + ID)

Y2R(N) = AR + BR: Y21(N) = AI + BI

Y2R(N + NH) = An - BR: Y2I(N + NH) = AI - BI: NEXT N

IC = ID: ID = ID + IA: NEXT K: IA = IA / 2: IB = 2 * IB

FOR N = 0 TO NP - 1: YIR(N) = Y2R(N): YII(N) = Y2I(N): NEXT N: NEXT L

FOR N = NP TO 1 STEP -1: Y(N) = YIR(N - 1) / NP: NEXT N: N1 = NH

FOR L = 1 TO LP - 1:N1 = N1 / 2

FOR N = 1 TO NI: V(N) = .5 * (Y(2 * N - i) - Y(2 * N)) " 2: NEXT N:

VBAR = V(1)

FOR N = 2 TO NI: VBAR = VBAR + (V(N) - VBAR) / N: NEXT N

FOR N = 1 TO NI: Y(N) = .5 * (Y(2 * N - 1) + Y(2 * N)): NEXT N

PRINT L, T * (2 " (L - 1)), VBAR: NEXT L: BEEP

Figure 22. Program for flicker noise with '_= 102.4 s and ALLFFT.

51

PROGRAM ALLFFT USING FFT TO PERFORM CONVOLUTION

N

1

2

3
4
5
6
7
8
9
10

INT TIME VARIANCE

.2 437.8973

.4 _ 440,.4908

.8 532.6213
1.6 517.8229
3.2 800.6278
6.4 846.5118

12.8 1505.262
25.6 1135.482

51.2 5.160076

102.4 60.71655

Figure 23. Data for flicker noise with _ = 102.4 s and ALLFFT.

52

!1 II1"

CLS

DIM X(2048), XIR(2048), XII(2048), X2R(2048), X21(2048), HM(2048), HP(2048)

DIM Y(2048), YIR(2048), YII(2048), Y2R(2048), Y2I(2048), V(2048)

PRINT "PROGRAM ALLPFT1 USING FFT WITH SPECTRUM SHAPING": PRINT

PRINT "N", "INT TIME", "VARIANCE": PRINT : T = .2
NP = 2048: LP = ii: NH = NP / 2: PI = 3.14159: U = 2 * PI / NP

FOR N = 0 TO NH - 1: X(N) = 100 * (RND - .5): NEXT N

FOR N = NH TO NP - 1: X(N) = 0: NEXT N
FOR M = 1 TO NH - I: HM(M) = 1 / SQR(M): HP(M) = 0: NEXT M

HM(0) = 0: HP(0) = 0: HM(NH) = 0: HP(NH) = 0
FOR M = NH + I TO NP - I: HM(M) = HM(NP - M): HPCM) = 0: NEXT M

FOR M = 0 TO NP - 1: XIR(M) = X(M): XII(M) = 0: NEXT M: IA = NP / 2: IB = 1

FOR L = 1 TO LP: IC = 0: ID = IA
FOR K = 1 TO IB: ZR = COS(IC * U): ZI = -SIN(IC * U)

FOR M = IC TO ID - 1

AR = XlR(M + IC): AI = XlI(M + IC)

BR = ZR * XlR(M + ID) - ZI * XII(M + ID)

BI = ZI * XIR(M + ID) + ZR * XII(M + ID)

X2R(M) = AR + BR: X2I(M) = AI + BI

X2R(M + NH) = AR - BR: X2I(M + NH) = AI - BI: NEXT M
IC = ID: ID = ID + IA: NEXT K: IA = IA / 2: IB = 2 * IB

FOR M = 0 TO NP - 1: XlR(M) = X2R(M): XII(M) = X2I(M): NEXT M: NEXT L

FOR M = 0 TO NP - I: HR = HM(M) * COS(HP(M)): HI = HM(M) * SIN(HP(M))

YIR(M) = XIR(M) * HR - XII(M) * HI
YII(M) = XIR(M) * HI + XII(M) * HR: NEXT M: IA = NP / 2: IB = 1

FOR L = 1 TO LP: IC = 0: ID = IA
FOR K = 1 TO IB: ZR = COS(IC * U): ZI = SIN(IC * U)

FOR N = IC TO ID - 1: AR = YIR(N + IC): AI = YII(N + IC)

BR = ZR * YIR(N + ID) - ZI * YII(N + ID)

BI = ZI * YIR(N + ID) + ZR * YII(N + ID)

Y2R(N) = AR + BR: Y21(N) = AI + BI

Y2R(N + NH) = AR - BR: Y21(N + NH) = AI - BI: NEXT N
IC = ID: ID = ID + IA: NEXT K: IA = IA / 2: IB = 2 * IB

FOR N = 0 TO NP - I: YIR(N) = Y2R(N): YII(N) = Y2I(N): NEXT N: NEXT L

FOR N = NP TO 1 STEP -I: Y(N) = YIR(N - I) / NP: NEXT N: N1 = NH

FOR L = 1 TO LP - I: N1 = N1 / 2

FOR N = 1 TO NI: V(N) = .5 * (Y(2 * N - i) - Y(2 * N)) " 2: NEXT N:

VBAR = V(1)
FOR N = 2 TO NI: VBAR = VBAR + (V(N) - VBAR) / N: NEXT N

FOR N = 1 TO NI: Y(N) = .5 * (Y(2 * N - I) + Y(2 * N)): NEXT N

PRINT L, T * (2 (L - i)), VBAR: NEXT L: BEEP

Figure 24. Program for flicker noise with ,c= 102.4 s and ALLFFT1.

53

PROGRAM ALLFFTI USING FFT WITH SPECTRUM SHAPING

N

1

2

3

4

5
6

7
8

9

10

INT TIME VARIANCE

.2 1.219962

.4 1.214046

.8 1.171432

1.6 1.17254

3.2 .9797807
6.4 .7463165

12.8 1.43384
25.6 1.68266

51.2 .9090664

102.4 .3821753

Figure 25. Data for flicker noise with '_ = 102.4 s and ALLFFT1.

54

',I :11i:

IIIII I I I I

o

_)

IIIII I I I I i,,,,,, , I
0

0

--_ o

m

m

m

0

m

m

m

m _

n

"2.
.,--0
0
d

u_

U.

0

0

od

U_

55

CLS

DIM X(8192), H(8192), ¥(8192), V(8192)
PRINT "PROGRAM ALLCON USING DIRECT CONVOLUTION": PRINT

PRINT "L", "INT TIME", "VARIANCE": PRINT
NP = 4096: LP = 12

FOR N = 0 TO NP - 1

X(N) = I00 * (RND - .5): Y(N) = 0: H(N) = 1: NEXT N
FOR N = 0 TO NP - 1

FOR I = 0 TO N

Y(N) = Y(N) + X(I) * H(N - I)
NEXT I

NEXT N

FOR N = NP TO 1 STEP -i

Y(N) = Y(N - I)
NEXT N: N1 = NP

FOR L = I TO LP: N1 = N1 / 2
FOR N = 1 TO N1

V(N) = .5 * (Y(2 * N - I) - Y(2 * N)) " 2

NEXT N

VBAR = V(1)
FOR N = 2 TO N1

VBAR = VBAR + (V(N) - VBAR) / N
NEXT N

FOR N = 1 TO N1

Y(N) = .5 * (Y(2 * N - 1) + Y(2 * N))
NEXT N

PRINT L, .2 * (2 " (L - I)), VBAR
NEXT L: BEEP

PROGRAM ALLCON USING DIRECT CONVOLUTION

L INT TIME VARIANCE

1 .2 404.4132
2 .4 621.1478

3 .8 1031.323

4 1.6 1914.698

5 3.2 3831.717

6 6.4 8453.081

7 12.8 18015.49

8 25.6 25252.21

9 51.2 28800.24
10 102.4 90826.44

Ii 204.8 309915.6

12 409.6 699118.1

Figure 27. Program and data for radom walk noise with _ = 409.6 s and ALLCON.

56

h! :It I

I
!11111 I I I

(D
0

illi,1 1 1 I iillll I i i

o o

>

llllll I I I

o

o
_ 0
_ 0

0

Z

oo
o

(I)

u_

0

lb.

0
W_

o
Q.

C'J

u_

5"/

CLS

DIM X(1024), H(I024), Y(I024), V(I024)

PRINT "M", "INT TIME", "VARIANCE"

PRINT
NP = 1024

FOR N = 0 TO 511

X(N) = I00 * (RND - .5): H(N) = I: Y(N) = 0

NEXT N
FOR N = 512 TO NP - 1

X(N) = i00 * (RND - .5): H(N) z i: Y(N) : 0
NEXT N

FOR N = 0 TO NP - 1
FOR I = 0 TO N

Y(N) = Y(N) + X(I) * H(N - I)
NEXT I
NEXT N

FOR N = NP TO 1 STEP -1

Y(N) = Y(N - I)
NEXT N

N1 = NP

FOR M = 1 TO 10

N1 = N1 / 2

FOR N = 1 TO N1

V(N) = .5 * (Y(2 * N - I) - Y(2 * N)) - 2
NEXT N

VBA_ -- V(1)
FOR N z 2 TO N1

VBAR -- VBAR + (V(N) - VBAR) / N
NEXT N
FOR N = 1 TO N1

Y(N) - .5 * (Y(2 * N - i) + Y(2 * N))

NEXT N

PRINT M, .2 * (2 " (M- 1)), VBAR

NEXT M
BEEP

M INT TIME VARIANCE

1 .2 394.7494

2 .4 610.4443

3 .8 1093.376

4 1.6 1712.925

5 3.2 3951.782

6 6.4 12355.76

7 12.8 15130.16

8 25.6 38779.27

9 51.2 64480.73

10 102.4 117919.4

Figure 29. Program and data for random walk noise with '_= 102.4 s and ALLCON.
58

IIIII I I I I

cO
0

illlll I I I ililli _ _ _ I_l,_ _ _
O O O
I"" T"

v

m

m

m

m

n

m

m

m

w

u

i

m

m

m

n

O
O
O
'1""

O
O

O

oo
O
'I""

1.1..

O
t,/)

.,,-,
:::1
f,/)

O

O
a_

d

:3
{::)')

U..

59

CLS _
DIM X(2048), XIR(2048), Xli(2048), X2R(2048), X21(2048)

DIM H(2048), HIR(2048), HII(2048), H2R(2048), H2I(2048)
DIM Y(2048), YIR(2048), Yli(2048), Y2R(2048), Y2I(2048), V(2048)

PRINT "PROGRAM &LLFFT USING FFT TO PERFORM CONVOLUTION": PRINT

PRINT "N" "INT TIME", "VARI_CE"" PRINT : T = 2

NP = 2048: LP • 11: NH • NP / 2: PI • 3.14159: U = 2 * PI / NP

FOR N = 0 TO NH - 1: X(N) • 100 * (RND - .5): H(N) - 1: NEX_ N

FOR N = NH TO NP - 1: X(N) - 0: H(N) - 0: NEXT N
FOR M = 0 TO NP - 1: XlR(M) = X(M): XII(M) = 0: NEXT M: IA = NP / 2: IB = 1

FOR L - 1 TO LP: IC = O: ID - IA

FOR K = 1 TO IB: ZR = COS(IC * U): ZI = -SIN(IC * U)

FOR M - IC TO ID - 1

AR = XlR(M + IC): AI = XII(M ÷ iC)

BR = ZR * XIR(H +_ID) - ZI * XII(M + ID)

BI - ZI * XIR(M + ID) + ZR * XII(M + ID)

X2R(M) • AR + BR: X21(M) - AI ÷ BI
X2R(M + NH) = AR - BR: X2I(M + NH) - AI - BI: NEXT M

IC = ID: ID = ID + IA: NEXT K: IA = IA / 2: IB = 2 * IB

FOR M = 0 TO NP - 1: XIR(M) = X2R(M): XlI(M) = X2!(M): NEXT M: NEXT L

FOR M = 0 TO NP - 1: HIR(M) = H(M): HII(M) = 0: NEXT M: IA = NP / 2: IB = 1

FOR L = 1 TO LP: IC = 0: ID • IA _ _=

FOR K = 1 TO IB: ZR = COS(IC * U): ZI = -SIN(IC * U)

FOR M = IC TO ID - 1: AR = HIR_ + i_): AI = HiI(M + IC)

BR = ZR * HIR(M + ID) - ZI * HII(M ÷ ID)

BI = ZI * HIR(M + ID) + ZR * Hli(M + ID) _

H2R(M) = AR + BR: H21(M) = Al + BI ._
H2R(M + NH) - AR - BR: H2I(M ÷ NH) = AI - BI: NEXT M
IC = ID: ID • ID $ IA: NEXT K: IA = IA / 2: IB = 2 * IB

FOR M = 0 TO NP I: HIR(M) = H_(M): =HII(M) = H2I(M): NEXT M: NEXT L

FOR M = 0 TO NP - 1
YIR(M) - XlR(M) * HIR(M) - XII(M) * HII(M)

YII(M) = XlR(M) * HII(M) ÷ XII(M) * HIR(M): NEXT M: IA = NP / 2: IB = 1

FOR L • 1 TO LP: IC = 0: ID = IA

FOR X = 1 TO IB: ZR = COS(IC * U): ZI = SIN(IC * U)
FOR N = IC TO ID 1: AR = YIR(N ÷ IC): kl = YII(N + IC)

BR = ZR * YIR(N ÷ ID) - ZI * YII(N + ID)

BI - ZI * YIR(N + ID) + ZR * YII(N + ID)

Y2R(N) = AR + BR: Y21(N) = AI ÷ BI

Y2R(N ÷ NH) = AR - BR: Y2I(N + NH) = AI - BI: NEXT N
IC = ID: ID = ID + IA: NEXT K: IA = IA / 2: IB = 2 * IB

FOR N = 0 TO NP - 1: YIR(N) = Y2R(N): YII(N) = Y21(N): NExT N: NEXT L

FOR N = NP TO 1 STEP -1: Y(N) = YIR(N - 1) / NP: NEXT N: N1 = NH

FOR L = 1 TO LP - 1:N1 = N1 / 2

FOR N = I TO NI: V(N) = .5 * (Y(2 * N - I) - Y(2 * N)) " 2: NEXT N:

VBAR = V(1)
FOR N = 2 TO NI: VBAR = VBAR + (V(N) - VBAR) / N: NEXT N

FOR N = 1 TO NI: Y(N) = .5 * (Y(2 * N 1) + Y(2 * N)): NEXT N

PRINT L, T * (2 " (L - 1)), VBAR: NEXT L: BEEP

F_

J

Figure 31. Program for random walk noise with '_ = t02.4 s and ALLFFT.

6O

_:t Ili

PROGRAM ALLFFT USING FFT TO PERFORM CONVOLUTION

N

1
2

3

4

5

6
7

8

9
10

INT TIME VARIANCE

.2 394.7613

.4 610.4506

.8 1093.399

1.6 1712.953

3.2 3951.828
6.4 12355.85

12.8 15130.14

25.6 38779.55
51.2 64481.73

102.4 117921.1

Figure 32. Data for random walk noise with t = 102.4 s and ALLFFT.

61

CLS

DIM X(2048), X1R(2048), Xli(2048), X2R(2048), X2I(2048), HN(2048), HP(2048)
DIM Y(2048), Y1R(2048), Yli(2048), Y2R(2048), Y2i(2048), V(2048)
PRINT "PROGRAM ALLFFT1 USING FFT WITH SPECTRUM SHAPING": PRINT

PRINT "N", "INT TIME", "VARIANCE": PRINT ." T " .2

NP = 2048: LP = 11: NH = NP / 2: PI = 3.14159: U = 2 * PI / NP
FOR N = 0 TO NH - 1: X(N) = 100 * (RND - .5): NEXT N

FOR N = NH TO NP - 1: X(N) = 0: NEXT N

FOR M = 1 TO NH - I: HM(M) - 1 / M: HP(M) = 0: NEXT M
HM(0) = O: HP(0) = 0: HM(NH) = 0: HP(NH) = 0

FOR M = NH + 1 TO NP - 1: HM(M) - HM(NP - M): HP(M) m 0: NEXT M

FOR M = 0 TO NP - 1: XlR(M) = X(M): XlI(M) = 0: NEXT M: IA w NP / 2: IB = 1
FOR L = 1 TO LP: IC " 0: ID = IA

FOR K = 1 TO IB: ZR " COS(IC * U): ZI - -SIN(IC * U)
FOR M = IC TO ID - 1

AR = XlR(M + IC): AI = XlI(M + IC)

BR = ZR * XlR(M + ID) - ZI * XlI(M + ID)

BI = ZI * XlR(M + ID) ÷ ZR * XlI(M + ID)

X2R(M) = AR ÷ BR: X2I(M) - AI ÷ BI

X2R(M + NH) = AR - BR: X2I(M + NH) = AI - BI: NEXT M

IC = ID: ID = ID + IA: NEXT K: IA = IA / 2: IB " 2 * IB

FOR M I 0 TO NP - 1: XlR(M) = X2R(M): XlI(M) - X2I(M): NEXT M: NEXT L

FOR M = 0 TO NP - 1: HR = HM(M) * COS(HP(M)): HI = HM(M) * SIN(HP(M))

YIR(M) - XIR(M) * HR - XII(M) * HI

YII(M) = XlR(M) * HI + XlI(M) * HR: NEXT M: IA " NP / 2: IB = 1

FOR L = 1 TO LP: IC = 0: ID = IA

FOR K " 1 TO IB: ZR = COS(IC * U): ZI " SIN(IC * U)

FOR N " IC TO ID - 1: AR = YIR(N + IC): AI = YII(N + IC)

BR = ZR * YIR(N + ID) - ZI * YII(N + ID)

BI = ZI * YIR(N + ID) + ZR * YII(N + ID)

Y2R(N) = AR + BR: Y2I(N) = AI + BI

Y2R(N + NH) = AR - BR: Y2I(N + NH) = AI - BI: NEXT N

IC = ID: ID = ID + IA: NEXT K: IA " IA / 2: IB = 2 * IB

FOR N = 0 TO NP - 1: YIR(N) = Y2R(N): YII(N) " Y2I(N): NEXT N: NEXT L

FOR N - NP TO 1 STEP -1: Y(N) = YIR(N - 1) / NP: NEXT N: N1 = NH

FOR L " 1 TO LP - 1:N1 = N1 / 2
FOR N " 1 TO NI: V(N) = .5 * (Y(2 * N - 1) - Y(2 * N)) " 2: NEXT N:

VBAR = V(1)

FOR N = 2 TO NI: VBAR = VBAR ÷ (V(N) - VBAR) / N: NEXT N

FOR N = 1 TO NI: Y(N) - .5 * (Y(2 * N - 1) + Y(2 * N)): NEXT N

PRINT L, T * (2 - (L - 1)), VBAR: NEXT L: BEEP

Figure 33. Program for random walk noise with t = 102.4 s and ALLFFT1.

62

il I I'

PROGRAM ALLFFT1 USING FFT WITH SPECTRUM SHAPING

N

1
2

3
4

5

6

7
8

9

10

INT TIME VARIANCE

.2 2.777584E-03

.4 5.458743E-03

.8 1.051909E-02
1.6 2.125172E-02

3.2 3.561426E-02
6.4 7.147162E-02

12.8 .1857618

25.6 .4147886

51.2 .3673056
102.4 .3560083

Figure 34. Data for random walk noise with '_ = 102.4 s and ALLFFT1.

63

IIIIII I I I IIIII I ! I I IIIII I I I I IIIII I I I I

d _

_ O
_ 0
m

m

m

m

0
m 0

m _

n

u

m

m

n

m _

m

m

m

I

m

"2.

0

_6

LL

0
ffl

Q.

U_

64

i:1 | I

Form Approved
REPORT DOCUMENTATION PAGE oie No. 0704-0188

PubUcr_ortlng burdenforthiscoles_lonof InfofrnationIs estlmaledtoaverage1hourperresponse,Includingthe timeforrevtewingInstructions,_archlug existingdatasoucces,
gatheringand malntalnlngthedataneeded,and completingand reviewingtheoollectionofInformation.Sendcommentsregardingthisburdenestimateor anyotheraspe,clOfthis
colectlonof Infom'_lton,Including suggestionsfor reducingthisburden,to WashingtonHeadqu._rlersServices,Dhecloratefor InformationOperationsandRe,pods, 1215JeffersonDavis
Highway.Su_he1204. ArlIngton,VA 2"2202-4302,andto the Officeof ManagementandBudge(,PaperworkReductionPro_ectIO704-Ot88), W_hinglon, DC 20503.

I. AGENCY USE ONLY _.eava blank) 12. REPORT DATE 3. REPORT TYPE AND DATES COVERED

November 1994 Contractor Report
4. TITLE AND SUBTITLE

Investigation of Allan Variance for Determining Noise Spectral Forms with
Application to Microwave Radiometry

0. AUTHOR(S)

William D. Stanley

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Old Dominion University Research Foundation

Department of Engineering Technology
College of Engineering & Technology
Norfolk, Virginia 23529

9. SPONSORING/MONITORINGAGENCYNAME(S)ANDADDRESS(ES)

National Aeronautics and Space Administration
Langley Research Center
Flampton, Virginia 23681-0001

11.SUPPLEMENTARYNOTES

Langley Technical Monitor: L. C. Schroeder

Final Report - Task 12

6. FUNDING NUMBERS

C NAS1-19858
TA 12
WU 233-01-03-22

8. PERFORMING ORGANIZATION
REPORT NUMBER

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

NASA CR- 194985

12a. DISTRIBUTION t AVAILABILITY STATEMENT

Unclassifed- Unlimited

Subject Category 43

12b. DISTRIBUTION CODE

l"t. ABSTRACT(Maximum 200 words)

An investigation of the Allan Variance method as a possible means for characlerizing fluctuations in radiometric

noise diodes has been performed. The goal is to separate fluctuation components inlo white noise, flicker noise,

and random-walk noise. The primary means is by discrete-time processing, and the study focused primarily on
Ihe digital processes involved. Noise satisfying the requirements was generated by direct convolution, Fast

Fourier Transformation (FFT) processing in the time domain, and FFT processing in the frequency domain.
Some of the numerous results obtained are presented along wilh the programs used in the study.

14. SUBJECTTERMS

microwave radiometry, noise characterization, noise diode stabilily

17. SECU RITY CLAgSIFICATION
OF REPORT

Unclassified

NSN 7540-0 t-280-5500

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

15. NUMBER OF PAGES

65

16. PRICE CODE

A04

20. LIMITATION OF ABSTRACT

Standard F_rm 298 (Rev. 2-89)
Prescribedby ANSI_ld. Z3g-18
2g8-10"2

!] • i:

